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Goddard Space Flight Center, 
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In the case of adiabatic flow of an ideal electron or ion gas in the 

presence of gravitational and electromagnetic fields, it is possible to 

derive a system of scalar equations of motion for the gas that provides 

an alternative to the Euler formulation. The new dynamical variables 

that replace the velocity are three scalars, one of which is a generaliza- 

tioil of the flow potential and satisfies a generalized Hamilton-Jacobi 

equation. The other two are constants of motion that specify the intrinsic 

vt ticity, which is that part of the total vorticity that is not produced by 

the external fields, but rather is simply a residue of the initial conditions 

of the gas. It is this intrinsic vorticity that satisfies the generalization 

of the simple vorticity conservation theorem. The same formalism can 

be adapted to the case of constant-temperature flow, and to the flow of an 

arbitrary barotropic fluid. 
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SCALAR FORMULATION OF IDEAL CHARGED GAS FLOW 

I, INTRODUCTION 

e Euler's equation for an ideal electrically uncharged fluid, which is a vector equa- 

tion, can be reduced to a scalar equation in the case of potential flow. The conditions 

that must be fulfilled in order for potential flow to exist are the following: (1) The 

pressure must be a function of the fluid density alone. (2) The external force acting 

on the fluid must be the gradient of a scalar potential. (3) The curl of the fluid velocity 

must everywhere vanish. 

According to the Helmholtz (or Kelvin) vorticity conservation theorem, if the third 

condition is satisfied at any given instant of time, it will continue to hold for all time. 

When the above conditions are satisfied, the velocity can be expressed as the 

gradient of a flow potential : 

MA v = x s  
The most important special case for which the first of the above conditions is 

satisfied is that of isentropic flow, for which the specific entropy is everywhere con- 

stant for all time. For this case, Euler's equation becomes 0 ) 
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where G is the potential for the ekternal force (which throughout will be taken to be 

gravitation), and is the specific enthalpy. 

In the case of time-independent flow, - bybt reduces to a constant E having the 
I -  

dimensions of energy/unit mass, and (1.2) becomes 

which is Bernoulli's equation. 

It is interesting to note that 

where 

is the substantial time derivative. But from single-particle Hamilton-Jacobi theory we 

have the following relations: 

and 

2 

(1.6a) 

(1.6b) 
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4 where& is Hamilton's Principal Function, m is the particle mass, and L is the particle 

Lagrangian. Comparison of equations (1.6) with (1.1) and (1.4) indicates that the flow 

potential s plays a role analogous to,&. Comparison of the potential energy terms 

in (1.4) and (1.6b) indicates that, as far as  dynamical effects are  concerned, the enthalpy 

.f! plays the role of a thermal potential which is to be treated in the same way as the 

gravitational potential G 

This analogy between the formulation of potential flow in terms of the flow potential 

s and the single-particle Hamilton-Jacobi formalism is further reinforced by using 

(1.1) to eliminate V in (12)* The resulting nonlinear particle differential equation for 

s has the form of the Hamilton-Jacobi equation: 

2 

This equation provides a scalar alternative to Euler's equation in the case of ir- 

rotational, isentropic flow. Once (1.7) has been solved (for given G and%), %can be 

found from (1.1) and the fluid particle density e can be found from the continuity equa- 

tion as  follows: 

It would be desirable to generalize this scalar formulation in three respects: (1) by 

replacing the isentropic requirement that the entropy be everywhere constant by the 

weaker adiabatic requirement that the entropy be constant along any given flow line, 

in which case the pressure will be a function of the entropy as well as the density; (2) 
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by including the non-potential electromagnetic forces that act on an electrically charged 

fluid; (3) by including rotational as well as irrotational flow. This generalization will 

be carried out in the work that follows. We shall see, moreover, that a slight modifica- 

tion of the formalism suffices to include the constant temperature case for which the 

temperature must be constant on a given flow line (but may vary from line to line), and 

I -  

I 

the case of an arbitrary barotropic fluid for which the pressure is an arbitrary function 

of the pressure alone. 
I 

Throughout the derivation we shall consider only an jdeal charged fluid. In the 
I 

case of an electron gas, for example, this means that we shall neglect not only its self- 

viscosity, but also the frictional drag between it and the ion gas which necessarily oc- 

cupies the same region of space. 

II. EULER FORWLATION 

Our starting point is the familiar N e r  equation for an ideal charged fluid, such 

as an electron or ion gas in which viscosity and heat conduction are ignored, in the 

presence of a gravitational potential G and electric and magnetic fields E andg: 
sw 

where M and 9 are the particle mass and charge, the pressure, and f the particle 

I density. 

This equation must be supplemented by the continuity equation: 
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(2.2b) 

These two equations must be further supplemented by an equation that specifies 

the nature of the thermodynamic constraint on the flow. In the case of isentropic flow 

of a perfect gas for which the ratio of specific heats is v, th i s  thermodynamic side- 

condition is 

For the weaker requirement that the flow be adiabatic, i.e. that the specific entropy be 

constant along a flow-line, the thermodynamic equation is 

(Adiabatic Flow) 

A necessary first step in deriving a scalar alternative to Euler's equation is to 

eliminate e from (2.1). This is accomplished by means of the following thermodynamic 

identity: 

where Tis the temperature, and &and <are the specific entropy and enthalpy 

respectively. 
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We shall also eliminate the electric and magnetic field intensities from (2.1) in 
1 

0 
favor of the vector and scalar potentials A and A by means of the familiar relations 

m 

and 

B = V X A  
(w - H I -  

Using (2.5) and (2.6), (2.1) can be cast into the following form: 

(2.6a) 

(2.6b) 

(2.7) 

The Thermal Function 

It is possible to absorb the termTzbin (2.7) into the other three terms by elirni- 

nating the temperatureT in favor of a scalar functionx, called the thermal function, 

that is defined by the following equation: 

D J = T .  

The utility of the thermal function follows from the identity 

We now formally introduce the requirement that the flow be adiabatic: 

D A , =  0. 
6 

(2.10) 



' Using (2.8) and (2.10) in (2.9), we arrive at the desired expression forT&: 

(2.11) 

Using this expression to eliminate the termTZlvp. in (2.7), we arrive at the following 

form of Euler's equation: 

(2.12) 

Before pursuing the formal development further, it would be well to discuss the 

physical significance of the thermal functionr. From (2.8) we note that r cou ld  be re- 

garded as the reading of a clock that moves with the fluid and whose rate is proportional 

to the temperatureT. 

A further insight into the physical meaning of r c a n  be gained from a comparison 

of (2.8) with (1.6b). The latter equation states that Hamilton's Principal Function -& 
can be regarded as the reading of a clock whose rate is the Lagrangian L which, in the 

absence of any potential energy, is just equal to the kinetic energy. But the temperature 

T is just equd to (except for a proportionality constant) the kinetic energy of random 

thermal motion. This suggests that r p l a y s  a role analogous to&, except that it refers 

to the energy of random thermal motion rather than to the macroscopic kinetic energy. 
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. 
Referring to (l.Sa), we see that this analogy suggests that - Vrshould in some way 

be related to a thermal momentum flux in the fluid, i.e. the momentum associated with 

a heat flux. This thought is reinforced by writing (2.12) in the following form: 

, 
1 .  

where 

(2.13a) 

(2.13b) 

and 

We note that 

term m nxxis the thermal contribution. This fact, together with the above-mentioned 

has the form of a generalized canonical particle momentum in which the - 
analogy of J witha, suggests that the thermal function could perhaps be used to 

describe heat flux as well as  temperature (i.e. heat energy density). It is evident that 

(2.8) does not completely determine J s i n c e  it does not specify the difference in the 

values of sassociated with different flow lines at a given instant of time. Because 

we have postulated an ideal fluid, and so are ignoring heat flux, we shall simply take 

the point of view that the degrees of freedom in r t h a t  are not specified by (2.8) may be 

arbitrarily specified according to mathematical convenience, i.e. they may be regarded 

as inconsequential constants of integration. 
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Thermal Gauge Invariance 

Part of the indeterminacy in r c a n  be described in terms of a gauge indeterminacy 

that is completely analogous to what we encounter in the case of the electromagnetic 

scalar and vector potentials. We note from (2.13b) and (2.13~) that if we add an arbitrary 

function of A, tor, then p is increased by the gradient of some scalar function v, and * 
8 is diminished by > w / h t .  Thus 

AM P ' =  I**c P + p  

and 

But if and satisfy Euler's equation 
* 

do- b y / b t  

(2.14a) 

(2.14b) 

f / 
(2.13a), then so do and f. Thus EUler's 

n,-.- 

equation does not suffice to specify the gauge function Y o  As in the case of the electro- 

magnetic gauge, the choice may be made on the basis of mathematical convenience. We 

shall later see that a particular choice suggests itself in a very natural way. 

Intrinsic Vorticity 

Inasmuch as the definition of vorticity for an uncharged isentropic fluid is a ZY = 

( - v X m%)$tq , a natural generalization would consist of replacing the particle momen- 

tum mv with the canonical momentum p defined in (2.13b). Doing this, (2.13a) becomes 
+ m 

(2.15a) 
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~ where 

(2.15b) 

l -  

We can gain an insight into the physical significance of 2 by noting that (2.15b) 

can be written in the follgwing form: 

where 

A =  m. ~ V X V  e -  

is the local angular velocity of the fluid.&, whose 

(2.16a) 

(2.16b) 

(2.16~) 

(2.16d) 
S 

magnitude is the Larmor fre- 

quency, represents the contribution to n that results from the diamagnetic response of 

the charged fluid to the imposition of the magnetic field!. .&,is an analogous contri- 

bution to fi that is thermal, rather than magnetic, in origin. It vanishes in the isentropic 

case (xh = 0) , and even for the weaker adiabatic requirement, the undetermined 

degrees of freedom of J c a n  often be used to make $&vanish. Thus M w is that part of 

n that is not actively produced either by the magnetic field or by thermal effects, but 

h 

* 

- 
rather is the part of fl that is intrinsic to the fluid and is to be associated with the * 
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initial conditions of the fluid. For this reason it will be called the intrinsic vorticity. 

(The definition (2.15b) indicates that the name canonical vorticity would also be 

appropriate.) In order to distinguish between w and&, the latter will be referred to as 
m 

the rotation, and the term vorticity will be reserved for% 

The importance of arises from the fact that it, rather thana cr+ , obeys the gener- 

alized vorticity conservation theorem, which we shall now derive. 

Generalized Vorticity Conservation 

Taking the curl of (2.15a), and using (2.15b), we find 

It follows directly from (2.15b) that 

(2.17) 

(2.18) 

It is well-known that a vector which satisfies equations of the form (2.17) and (2.18) 

must also satisfy the following relation: 

D)53,.dS = 0 
7 m 

S 

(2.19) 

L 

where the integration is taken over an arbitrary surface 5 that is frozen i n b  the fluid 

and moves with it. 

11 



Equation (2.19) is the desired generalization of the vorticity conservation theorem. 

We note that for an uncharged isentropic fluid E= EA = 0, so w, reduces to 

becomes the familiar Helmholtz (or Kelvin) theorem. 

and (2.19) 
c.l. 

Ill. VORTICITY CONSTANTS OF MOTION 

As a preliminary to deriving a more convenient formulation of the vorticity con- 

servation theorem, we express the generalized canonical momentum k in terms of 
rrr\ 

(2) 
three scalar functions s M and@ : 

where for later convenience s has been multiplied by the particle mass m. Referring 

to (2.14a) we see that mS ihcfudesthe indeterminate thermal gauge function. The sig- 

nificance of M and C$ becomes apparent when we substitute (3.1) into (2.15b): 

Thus M and @ determine the intrinsic vorticity% We must now find the equations of 

motion satisfied by M and 0 . These two scalar equations will then replace the vector 

equation (2.17). (Note that, because w, must be solenoidal, it can have only two degrees 

of freedom.) 

To arrive at the desired equations of motion for M and 9 , we substitute (3.1) into 

(2.15a) : 
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We now make a specific choice of thermal gauge as determined by the equation 

For this choice of thermal gauge (3.3) becomes 

2 m v  X u  = ( V - V @ ) V M - ( X * V M ) V +  - -  *wlr - m -  m M I  

Subtracting (3.6) from (3.5) we find 

Taking the cross-product of this equation withZM, and using (3.2) we have 

( 0 4  = 0 

Thus, if % # o ,  

P h = O  . 
13 



. Similarly, 

D + =  0. (3.10) 

If w, = o , then 

arbitrary constants (or zero) with no loss of generality. 

must be the gradient of a scalar, and M and @ may be set equal to - 
Equations (3.9) and (3.10) are the desired scalar equations of motion that describe 

the vorticity and replace the vector equation (2.17). These equations show that, for the 

choice of thermal gauge made in (3.4), M and 0 are constants of motion of the fluid. 

It is this fact that makes this choice of gauge the most natural one. 

From (3.2) it is evident that the product M# must have the dimensions of angular 

momentum. With no loss of generality we may assert that M has the dimensions of 

angular momentum and that 9 is dimensionless. Thus M may be regarded a s  an angular 

momentum, in some way related to the vorticity, that is conserved along a flow line. 

We may think of 6 as the initial value at t = 0 of one of the particle coordinates (in 

dimensionless form), whose memory is retained by the particle for all time. 

As an illustration, consider the simple case of rigid cylindrical rotation of an 

uncharged fluid., The constant angular velocity is n=fi h where 

along the cylindrical axis. Let r be the distance from the axis and <o the azimuthal 

angle. Then if 

is the unit vector 
r.c\ .r\ 

(3.11a) 



. 
and 

o =  (Q-nt (3.11b) 

it is easily verified that (3.9) and (3.10) are satisfied. It follows from (3.2) and (3.11) 

that 

(3.12) 

In this case the intrinsic vorticity 2 and the rotation & are identical, and M is just the 

particle angular momentum. For a more general vortex, however, in which the mag- 

netic force were taken into account, we see from (2.16a) that n # w .  For such a vortex, 
- 4 -  

M would not be the total particle momentum, but only that part of it caused by the 

'L intrinsic vorticity, i.e. M = m d  Y . 

I Since in the present example the azimuthal angle CQ of a particle is given by 

=nt +<oo , where (9, is the particle's azimuthal coordinate at t = o , it is evident that 

C#) = Qe . Thus, in this case it is the azimuthal coordinate whose initid value the par- 

ticle remembers. 

Finally, we note that for this example 

(3.13) 

whereq, is the unit vector in the azimuthal direction. Referring to (3J), we see that - 
MK@ is the contribution to that is to be associated with the intrinsic vorticity%, 

.-I 
tS 

which in this casehjust equal to the angular velocityfl . Since the right side of (3.13) 
m\ 
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. 
. is equal to the particle momentummL, which in this case is identical to p , we see that 

I ru*\ 

for this example there is no potential contribution x(mS)to p . 
m 

Transition to w = 0 
m 

From (3.2) we note that if either M or  @ becomes everywhere constant, then 2 
vanishes. Moreover, because M and 9 are constants along each flow line, if either 

one becomes everywhere constant at any instant of time (i.e. assumes the same value 

on all flow lines), it must remain constant for all time. This corresponds to the fact 

that if, at any instant of time, w, = 0 in (2.17), then its time derivative also vanishes 

everywhere, and so 2 must remain zero for all later time. 

The use of the scalar constants of motion M and # to describe the vorticity pro- 

vides an insight into the manner in which the transition from 2 # o to % = 0 takes 

place. In a fluid free of small scale instabilities such a transition could never come 

about. If, however, the Reynolds number is sufficiently large, turbulance mixes the 

fluid so that the values of the constants of motion M and @ (and,&) on neighboring flow 

lines tend to equalize. This process could be pictured as a diffusion of the constants 

of motion from regions in which they have large values into regions in which the values 

are smaller. If the turbulent mixing and the time lapse since t = 0 are large enough, 

the fluid will have forgotten the various values of hl and @ that were assigned to each 

of the flow lines at t = 0 . In this case, it will have made the transition to values that 

are constants throughout the fluid, which means that the fluid has permanently settled 

16 



into the condition characterized by u = o . When the value of A. becomes everywhere 

constant, the fluid has made the transition from adiabatic to isentropic flow. 

Y 

Even when abundant turbulant mixing occurs, however, the transition to constant 

values of M,@, and,& will not take place if an external constraint or boundary condition 

prevents it. For example, a rotating paddle wheel could inject vorticity (i.e. large 

values of M and +) into the fluid in such a way as to compensate for the decrease in M 

and 4 caused by diffusion (i.e. turbulent mixing). 

The constraint could also be geometric in nature as, for example, in the case of a 

fluid blowing radially outward from a central point (e.g. the solar wind). In this case 

as time elapses the ever increasing distance between what had been neighboring blobs 

of gas at t = o makes mixing ever more difficult. 

The above two constraints could occur in an ideal (i.e. frictionless) fluid. If we 

admit the possibility of friction, we have an additionaI mechanism that can prevent the 

transition to =o. From (2.16a) we see that, to the extent that fi is negligible, 
MIA 

= 0 means that = - qk/..- . Thus, in the case of a fully ionized plasma consisting 
r+r\ r*.r 

of electron and ion gases, the two gases must rotate in opposite directions if each is 

individually to fulfill the condition = 0 .  But the friction between the two counter- 

rotating gases, which is proportional to the electrical resistivity of the plasma, opposes 

this relative rotation and tends to make it vanish. Thus in this case friction works 

against the tendency of turbulent mixing to reduce 2 to zero. 

17 
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These examples illustrate that in many situations the transition to the condition 

2 = O ,  A, = constant does not occur because of constraints of one kind or another. If, 

however, no such constraints are present, and if one is not interested in a transient 

solution that is dependent on a particular set of initial conditions, then the particular 

solution characterized by ,u 5 0) ~br = C W ~ J ~  has greater physical significance than any 

other solution that satisfies the same boundary conditions, in the sense that it repre- 

sents the "steady-state" condition to which the fluid will be brought by turbulent mixing. 

Such "steady-state" solutions should be of particular importance in astrophysical 

problems in which the Reynolds number, and hence the turbulent mixing, is generally 

extremely large. 

Potential Flow 

Referring to (3.1), we note that if either M or 0 is a constant (or if M is an 

arbitrary function of @), the term MZ@ can be expressed as the gradient of a scalar, 

and so can be absorbed into the termP(ws) . In such a case p is just the gradient of a 

scalar and i o .  Such flow will be designated adiabatic potential flow. Referring to 

(2.13b), we see that for such flow 

w 

'ps = v + (q/mc)A + b V Z  m ., w I+rr - 
(Adiabatic Potential Flow) 

(3.14) 

If now,& should become constant, then the te rmpzx in (3.14) becomes the gradient 

of the scalarax which can be absorbed into the potential function S . Such flow will 

be designated isentropic potential flow. It is characterized by the condition 

18 



(3.15) 

(Isentropic Potential Flow) 

In the above discussion we noted that, in the absence of any constraints that would 

prevent its realization, the flow characterized by the conditions 2 = 0 and &= constant, 

which is just isentropic potential flow, represents the "steady-state" flow brought about 

by turbulent mixing. Taking the curl of (3.15), we can characterize such flow by the 

re1 ation 

(3.16) 

(Isentropic Potential Flow) 

o r a = &  i.e. the direction of the local angular velocity vector is opposed to the mag- - -  
netic field vector and has the magnitude of the Larmor frequency. 

It is of interest to note parenthetically that this condition could not be fulfilled by 

a constant-pressure charged fluid, because in this case there is no pressure gradient 

to help provide the necessary centripetal force, which must then be provided solely by 

the magnetic force. This requires that fi=2gc i.e. the angular velocity must equal 
m 

the cyclotron frequency ( z u  rather than the Larmor frequency. Referring to (2.16a) 

we see that the conditionn= 2.4.. (in the case of isentropic flow for which lLn= 0 )  re- 
1Ic 

quires that e= e L. Thus constant-pressure isentropic flow of a charged fluid is 

characterized by the presence of an intrinsic vorticity whose magnitude is the Larmor 

frequency. (Note that if w, = then A= o . Thus if rotation is present LO =aL and 
M Ac 

if the rotation is zero w, =-A . In either case \% I = \&I.( .) 
m 
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IV. SCALAR FORMULATION 

Adiabatic Flow 

Using (2.13b) to eliminate p in (3.1), we obtain the following expression for 
& 

L 
which is the generalization of (lol)o Using (4.1) to eliminate Y in (3.4), we arrive 

at the generalization of (107): 

(4.2) 

which will be referred to as the generalized Hamilton-Jacobi (H-J) equation. 

From (304) and (4.1) we find, makin.5 u s e  of (3 .9)  and (3.10), that 

t 
(4.3) D S = z I v - [G + % + (%d( cA" - %*A)] 

1 

which is a very natural generalization of (1.4) inasmuch as, except for the factor 

-k - ( v / = ) ~  1 which is unity in the non-relativistic limit in which we are working, 

(cAo- x-6) is just the contraction of the 4-vector. potential and the fluid 4-velocityY 

which means that the extra term in (4.3) that is missing from (1.4) is just the contri- 

bution of the electrostatic potential in the fluid rest-frame. 

20 



The density 7 can be found from the continuity equation. Using (4.1), we have 

which is the generalization of (1.8). 

The independent variables of the problem are S ,M , 9 ,by andJh, The generalized 

H-J equation (4.2) plus the side conditions O M '  WP = I)& = 0 provide four of the five 

necessary equations. (Note that the 

eliminated by means of (4.1), or else treated within the framework of an iteration 

procedure as a given vector function.) 

that appears in the D operator is t o  be either 

To complete the system of equations, we need an equation f o r x  In order to derive 

such an equation, we must know the thermodynamic properties of the fluid. For the 

sake of illustration, let us consider the fluid to be a perfect gas for which the ratio of 

specific heats is =Cp/cV . Because for a perfect gas %=cpT, we have using 

(2.8) 

(Even in the case of an arbitrary fluid, % can always be expressed as a function of 

T= andw, and so is not an independent variable.) For a perfect gas 

21 



I 
where k is the Boltzmann constant. From (4.6), the continuiw equation (2.2b), and 

the adiabatic condition (2.10), we find 

which can be written in terms of J b y  means of (4.5): 

This is the desired equation for J w h i c h  completes our system of five equations for the 

independent variables 5 M , @ A', a n d r .  

In the chart given in Figure 1 a comparison is made between the Mer and the 

scalar formulations. In the Euler formulation we may regard the three components 

of as the dynamical variables, and p and e as the thermodynamic variables. The 

dynamical equations are the three components of the N e r  equation; the equation for 

p is the adiabatic condition (2 .,4); and the equation for f is the continuity equation 

(2.2b). 

I 

In the scalar formulation V is replaced by the three scalars s , M , and 

Ehler equation is replaced by the H - J equation and the two side-conditions DM= 

In the case of potential flow, a significant simplification occurs in the scalar formula- 

tion in that M and @ drop out. No corresponding simplification occurs in the M e r  

formulation. 

and the 
MI 

So. 
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The thermodynamic variables in the scalar formulation are B andxwhich must 

satisfy the equations D,= 0 and (4.8), which are roughly comparable in difficulty with 

the equations for f and f' in the Euler formulation. The density f' does not enter into 

the scalar formulation at all. After the problem has been solved, and ,& and 

hence*) are known functions, e can be found from (4.6) which, solved for e ,  becomes 

(and 

where N is a normalization constant. 

When the flow is isentropic rather than adiabatic, the only surviving thermodynamic 

variable is % Thus the single equation (4.7) replaces the two equations for .& and 

that were needed for adiabatic flow. The only corresponding simplification that occurs 

in the Euler formulation is that the algebraic equation (2.3) replaces the differential 

equation (2.4). 

In the case of isentropic potential flow, the only surviving variables in the scalar 

formulation are s a n d t ,  and the H-J equation assumes the following simplified form: 

This has exactly the form of the single-particle H-J equation except for the presence 

of K. 

It is obvious that the advantage of the scalar formulation is greatest in the case of 

isentropic potential flow. In the more general case of adiabatic non-potential flow that 
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differs only slightly from isentropic potential flow, a simple perturbation solution is 

possible, using a solution of (4.10) as the zero-order solution. This procedure is 

facilitated by noting that, using D$=O, I)r=T , and (4.1), (4.2) can be written 

(4.11) 

where in this form of the generalized H-J equation it is the specific Gibbs function 

= g-T& , rather than*, that plays the roles of the thermal potential. The terms 
2. 

-Tb and-&v~-@'%)v($] - M.. in (4.11) constitute the perturbation. Because both of 

these terms will be small for flow that is only slightly different from isentropic potential 

flow, the change in s will be small, and we may linearize the term 

in calculating this change in s . 
[ l s  - (9 &)A]' 

Constant -Temperature Flow 

The term constant-temperature flow will be used to designate flow that satisfies 

the condition 

(4.12) 
I D T =  0 

which replaces the adiabatic condition (2.10). Flow satisfying the stronger condition, 

T = constant, will be designated isothermal flow. 

The derivation of the scalar formulation in the case of constant-temperature flow 

is completely analogous to that for adiabatic flow. We can eliminate the density in 
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mer's equation (2.1) by means of the thermodynamic identity 

(4.13) 

where 

V = R - T &  (4.14) 

is the specific Gibbs function. In order to transform the term maETthus introduced 

into Euler's equation, we define a function& by means of the equation 

D ~ = A . .  (4.15) 

By means of an identity analogous to (2.9), Mer's equation can be written in the form 

where now, in the constant-temperature case, 

(4.1 6 a) 

(4.16b) 

and 

Equations (3.1) and (3.2) are valid for constant-temperature flow as well as for adiabatic - 

flow. Thus we see that any adiabatic flow equation can be converted into the corresponding 
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constant-temperature flow equation by replacing(& A/, 7 and J 1 by (r - T A, 
f ] I  

and&) respectively and making no changes in S, M, @ or w . - 
The generalized H-3 equation for constant-temperature flow is 

This equation must be augmented by the three side conditions DT= 

complete the system of equations we need an equation for 

equation, like (4.8) will depend on the thermodynamic properties of the fluid. As before, 

we shall consider a perfect gas. Since in this case %= C e T  , we have 

M= Do = O. To 

analogous to (4.8). This 

7 

(4.18) 

and so 

Dg. = -T  Dz& (4.19) 

where we have used (4.12). It is possible to arrive at an independent expression for 

0% from the thermodynamic identity 

where in the second step we have again used (4.12). Since for a perfect gas P= kFT , 

(4.20) becomes 
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where in the second step we have used the continuity equation (2.2b). Finally, from 

(4.19) and (4.21) we have 

(4.22) 

which is the desired equation for& that is analogous to (4.8). Thus we have completed 

our system of equations for the three dynamical variables S,  M, and @ and the two 

thermodynamic variablesT a n d l  

variables, but once the problem has been solved, e can be found from 

The density e is not one of the simultaneous 

(4.23) 

which is just (4.9) with the factor Cp ‘’ca-’) absorbed into the normalization constant 

N e The velocity& can be found by substituting (3.1) (which remains valid for constant- 

temperature flow) into (4.16b): 

(4.24) 

The form of the constant-temperature H-3 equation that is analogous to (4.11) is 

(4.25) 
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where now %= &+T& plays the role of the thermal potential. This fact is especially 

favorable in the case of a perfect gas since then %= C p T  and it is not necessary to 

use the more complicated relation (4.18) to express the thermal potential (which in the' 

case of (4.17) is 3) in terms of the thermodynamic variab1es-r and&. For a perturba- 

tion calculation for nearly isothermal potential flow, however, we would write 8- +T& 

in (4.25) instead of %, and would regardTkv-a[TIA+ (ML)V_43 as the perturbation. 
2. 

For isothermal flow (T= constant) the terms involving& in (4.17) can be absorbed 

into the terms involving s simply by replacing s with the new flow potential s = ss-T& . I 

The isothermal H -3 equation can also be derived directly from the adiabatic 

equation (4.2) simply by specifying that r= T,t where Tc is the constant temperature. 

Then &x/bt = Tc and V__3/=0 , and so (4.2) becomes 

(4.26) 
n 

(Similarly, the isentropic H-J equation can be derived from (4.17) by specifying 

1 =,a;' where is the constant specific entropy.) Using D6 = 0 and the expression 

(4.24) f o r L  (without the termTV& c which has been absorbed into the termv - S), we 

arrive at the following alternative form of (4.26): 
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In the case of isothermal flow, the only thermodynamic variable is so we would 
% y  

use (4.21) as our thermodynamic equation instead of (4.12) and (4.22). The most con- 

venient expression for e is found by substituting ,& = cQ - &/r (from (4.18)) into 

(4.23) yielding 

(4.28) 

Barotropic Fluid 

In the case of a barotropic fluid there exists a thermal potential function 37s ~ ( p )  

that is a function of the density alone such that 

(4.29) 
Iw, m 

This relation can be used to eliminate f from Mer's equation (2-1). The derivation 

of the scalar formulation is identical to that for adiabatic flow except that% must be 

replaced by '7 and the terms involving T, &, and Jdo not appear- Thus the scalar 

formalism is identical to that for isentropic flow except for the replacement of % by? . 
The independent variables are s ,  )J\) 0 and 31 e The three dynamical equations are 

the H-J equation and the conditions D M =  D Q - 0 .  The thermodynamic equation for 

is derived by solving the relation ?= ?(e) for f' in terms of 7 ,  and then substituting 

to arrive at the desired equation this into the continuity equation 

for? e 

= -x-x 
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V. DISCUSSION 

The scalar formulation has an obvious advantage over the Euler formulation in 

the case of potential flow, since two of the three dynamical variables (M and $) drop 

out, whereas in the Euler formulation it is necessary to retain three variables, namely 

the three components of 2. In simple one-dimensional problems this advantage vanishes 

sincex has only one degree of freedom, but for three-dimensional problems it can be 

very significant. 

L 

- 

Even in the case of non-potential flow, the fact that two of the three dynamical 

variables in the scalar formulation, M and @, are constants of motion should make the 

fluid behavior easier to visualize and perhaps easier to calculate. 

The scalar formulation must always be applied within the framework of a two-fluid 

picture of the plasma, i.e. the dynamical equations of the ion and electron gases must 

be worked out individually. (A third, uncharged fluid can be added if necessary.) This 

procedure is more exact than the usual perfectly-conducting-single-fluid model in that 

the inertial effects of the electric current (essentially the electron flux) are taken into 

account. Because of the assumption that the electron and ion gases are ideal, however, 

we are neglecting the dissipative part of the plasma resistivity. 

In the N e r  formulation the intrinsic vorticity 2 is never brought into the open 

since it is regarded merely as a certain differential function of the components of y, 

which are the basic variables. In keeping with this approach, all functions of the fluid 
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flow, such as current density and frictional forces, are expressed as functions of &. 

In the scalar formulation W, (via the scalars M and 9) plays a central role, and & is 

reduced to the status of a certain differential function of S, M) and 0 .  In keeping 

with this point of view, it would be natural to express such things 88 current density 

and frictional forces as functions of S, AA , and 9. Such a procedure might suggest 

some physically meaningful approximations that would simplify the overall problem. 
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Footnotes I 

1. See, for example, L. D. Landau and E. M. Lifshitz, "Fluid Mechanics" (Addison- I 

Wesley Publ. Co., Reading, Mass., 1959), p. 19. I 

2. Such a representation is always possible for a continuously differentiable vector 

function. See, for example, L. Brand, Vector and Tensor Analysis" (Wiley & Sons, 

New York, 1947), p. 230. 

The introduction of the scalars S, M, and 6 i n  equation (3.1) represents 

a generalization of a procedure first used by Clebsch (Crelle's Journal, 2 (2357) 

and 56 (3.859) ) for an uncharged barotmpic f l u i d .  

summarized by H. Lamb, llHydrodynamicsll (Cambridge University Press, Cambridge, 

1932), 6th ed., p. 248, and by H. Bateman, llPar'vial Differential Equations 

of Mathematical Physics11 (Cambridge University Press, Cambridge, 1932), p. 164. 

This procedure is  
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Figure Caption 

Fig. 1. Comparison of Euler and Scalar Formulations. 
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Euler 
Formulation 

-. v : Euler eq. (3) 

P : D l n P  = - y ? -  v' 

p : Dp = - (G Si)p 

? : Euler eq. (3) 

P : ~ / p y  = const. 

p : D p  = - ( ? * " v ) p  

Scalar Formulation 

Non- potential Flow Potential Flaw 
G # O  I o = o  

S : H - J eq. 

M : D M = O  

$ : D +  = O  

S:H- Jeq.  

3 

s : D s = O  
* 

D 2 3  = - [ ( y  - 1) v *  ?] I)3 

S : H - J eq. 

M : D M = O  

+ : D + = O  

S : H - J e q .  

h : D h = - [ ( y  - 1) f * c ]  h 
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